[IFESTONE
lABS

<> ANYHEDGE



sily
IFESTONE
L laBs

Project Audit Report

AnyHedge

Auditor: Kyle Wildeman



Audit Report Disclaimer

Purpose of This Audit

This audit was performed independent of, and without compensation from,
the creators of AnyHedge. The purpose is to identify any potential

vulnerabilities, logic errors, and security concerns that may exist.

Scope of Analysis

This audit examines the smart contract code for technical vulnerabilities,
logic flaws, and potential attack vectors at the contract level. It does not
include any analysis of frontend or backend infrastructure. Additionally, it
attempts to highlight any trust assumptions or centralization risks that users

should be aware of when interacting with the contracts.

Methodology

Manual code review is performed to identify security vulnerabilities, logic

errors, and potential attack vectors. This process includes:

* Manual analysis of smart contract code
¢ Identification of commeon smart contract vulnerabilities

* Recommendations for security improvements

Limitations and Disclaimer

This audit does not guarantee the security of the audited contracts. Security
audits are inherently limited by time, scope, and the possibility of
undiscovered vulnerabilities. The absence of identified issues does not
imply the absence of vulnerabilities. Users should conduct their own due
diligence and consider additional security measures when interacting with

smart contracts.



AnyHedge Audit Report

Project Information
Project Name: Audit Date:

AnyHedge November 5, 2025
Auditor: Language:

Kyle Wildeman CashScript 0.9.2
Project Symbol: Project Website:

None https://anyhedge.com/
Project Logo:

4> ANYHEDGE

Project Description

AnyHedge allows you to take leveraged long positions or hedge your fiat value. Permissionless, non-

custodial, and on-chain.

Findings and Severity

HIGH: 2 MEDIUM: 1 W0 m

Transactions and Trust Levels

OPERATOR TRUSTED: 1 FRONTEND TRUSTED: 0 PLATE TRUSTED TRUSTLESS: 0



Scope Details
This section lists contracts and their functions covered in this audit. Function descriptions are

provided by the project.

AnyHedge v0_12 dynamic addresses 09.2

mutualRedeem

Safety feature where Short and Long can exit the contract at any time through mutual agreement.

payout

The contfract settles on a predefined maturity date or when a liquidation boundary 1s hit.

Transactions

This section details the dapps transactions and their level of required trust.

Note: All transactions made by the user still need to be Approved by the user unless they have
enabled an auto-Approve feature in their wallet. This means that users do have the opportunity to
verify whether a transaction is incorrect or malicious before they approve it. However, we rank the
Trust Classification of transactions under the worst-case assumption, which is a user that does not

manually verify every transaction request themselves before approving it.

Trust Levels:

Level Description

The user must trust the actions of another party (team, admins,
OPERATOR TRUSTED external service) to behave correctly. This may include a systemic
risk of loss or harm if the party behaves incorrectly.

The user must trust the frontend interface to build some parts of the
FRONTEND TRUSTED ] ] .
transaction correctly since the contracts do not enforce those settings.

The user must trust the templates are correct and not maliciously

designed.

The contracts enforce all critical transaction building decisions so

TRUSTLESS that no user loss or harm can occur, regardless of the frontend or

wallet behaviour.



1. Create Forward Contract OPERATOR TRUSTED

Two parties enter a BCH settled forward contract. The Short side pays the Long side when the price
increases and vice versa. The contract settles on a predefined maturity date or when a liquidation boundary
is hit.

Functions

None

Trust Level Explanation:

Operator level: The user must trust the external Oracle to provide honest and accurate off-chain price
data which the contract uses during contract settlement. Frontend-level: The user must trust the frontend

to initialize the contract with the correct parameters.

Findings

This section lists potential issues found during the audit.

Severity Description

Findings that can result in significant loss of user funds or cause
HIGH unintended contract manipulation which undermines the integrity

of the project.

Findings that can result in loss of user funds in a more hmited
m scope or allows contract manipulation which can cause
unintended consequences, but doesn't undermine the integrity of

the entire project.

Minor, non-critical findings that allow or cause unintended
consequences, such as an edge-case that prevents a user from
performing a certain expected transaction, but can be worked

around with no harm or loss.

m Minor findings which are unlikely to have any negative impact.

Observations of the design's limitations or restrictions.



1. Frontend fully trusted HIGH

AnyHedge contracts are created on-demand when two users want to enter a forward contract. This requires

a trusted frontend/server to handle the contracts parameters which brings the contract into existence.

Impact:

If any of the 13 contract parameters are entered incorrectly by the frontend it will have negative effects:

* shortMutualRedeemPublicKey: unable to call mutualRedeem()
* longMutualRedeemPublicKey: unable to call mutualRedeem()
* enableMutualRedemption: unable to call mutualRedeem()

* shortLockScript: loss of users BCH

* longLockScript: loss of users BCH

« oraclePublicKey: unable to call payout()

* nominalUnitsXSatsPerBch: incorrect payout price calculation
* satsForNominalUnitsAtHighLiquidation: incorrect payout price calculation
* payoutSats: incorrect payout price calculation

* lowLiquidationPrice: incorrect contract price bounds

* highLiquidationPrice: incorrect contract price bounds

* startTimestamp: incorret contract start time

» maturity Timestamp: incorrect contract end time

If one of the first three parameters related to mutualRedeem are entered incorrectly then mutualRedeem()
will not be callable. If this occurs along with an incorrect oraclePublicKey then payout() will also not be

callable, resulting in permanent locking of funds in the contract.

Recommendation:

To reduce attack surface a design with persistent contract(s) that lets users create and join forward
contracts (as NFTs) would allow the contracts to verify user addresses and remove some trust from the
frontend. This would also be easier for alternative frontends to interact with (e.g. if the primary frontend
goes down) since the persistent contract would be a known address and all existing forward contracts can
be viewed on it, rather than requiring to know each users parameters to rebuild their contracts to
determine the addresses. Emergency withdraws would also be simpler to construct since no user

signature parameters would be needed with the function.

Status: open



2. No unilateral exit option HIGH

The Anyhedge contract allows both participants of a forward contract to exit the contract if they both agree,

but if one of the users doesn't approve then no exit path can occur.

Impact:

If for some reason the payout function cannot be called (i.e. the contract was setup incorrectly or Oracle

issues) and one of the users is missing then the funds will be permanently locked.

Recommendation:

A timelocked 'exit of last resort' function that makes both users whole well after the initial forward
contract expired would prevent user funds from being permanently locked. If adapted to persistent

contracts + NFTs the function could also be triggered by anyone.

Status: open

3. Sanity check Oracle data

The Oracle is already fully trusted, but the contract assumes the Oracles provided data is correct (e.g. all

fields exist and are setup correctly)

Impact:

If the Oracle provides malformed data then values used to verify the payout function can be incorrect,

resulting in unexpected behaviour.

Recommendation:

At the most basic a length check would verify that settlementMessage and previousMessage are both
16bytes, limiting the number of ways the Oracle may mistakenly provide data. If possible, additional

checks on other fields could be added to verity values are within expected ranges.

Status: open

Report Information

Generated on: November 6, 2025 at 10:46 PM
Total findings: 3

Total observations: 0



